Isotropic-nematic phase transition of polydisperse clay rods.

نویسندگان

  • Phillip Woolston
  • Jeroen S van Duijneveldt
چکیده

Rod-like colloidal particles are known to display an isotropic-nematic phase transition on increase of concentration, as predicted already by Onsager. Both natural clay particles and synthetic rods tend to be polydisperse, however, and the question arises how to allow for this in comparing experimental observations with theory. Experimental data for a wide range of samples (both from the literature and the new results) have been collated, with aspect ratios ranging from 14 to 35. As a characteristic, the concentration is taken where half of the sample volume is nematic. Experimental data agree well with predictions for monodisperse finite aspect ratio rods. However, compared to these predictions, the width of the transition (taken as the ratio of isotropic and nematic limiting concentrations) is noticeably broadened. Still, in most cases, the transition can be characterised by a linear increase of the nematic phase volume with sample concentration. The transition width is in broad agreement with theoretical predictions for infinitely thin rods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

Density functional approach was used to study the isotropic- nematic (I-N) transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition den...

متن کامل

Free planar isotropic-nematic interfaces in binary hard-rod fluids.

Within the Onsager theory we study free planar isotropic-nematic interfaces in binary mixtures of hard rods. For sufficiently different particle shapes the bulk phase diagrams of these mixtures exhibit a triple point, where an isotropic (I) phase coexists with two nematic phases (N1 and N2) of different composition. For all explored mixtures we find that upon approach of the triple point the I-...

متن کامل

Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.

We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexib...

متن کامل

Determination of the critical exponents for the isotropic-nematic phase transition in a system of long rods on two-dimensional lattices: universality of the transition

Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior and universality for the isotropic-nematic phase transition in a system of long straight rigid rods of length k (k-mers) on two-dimensional lattices. The nematic phase, characterized by a big domain of parallel k-mers, is separated from the isotropic state by a continuous transition occ...

متن کامل

Isotropic-nematic phase transition in suspensions of filamentous virus and Dextran

We present an experimental study of the isotropic-nematic phase transition in an aqueous mixture of charged semi-flexible rods (fd virus) and neutral polymer (Dextran). A complete phase diagram is measured as a function of ionic strength and polymer molecular weight. At high ionic strength we find that adding polymer widens the isotropic-nematic coexistence region with polymers preferentially p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 142 18  شماره 

صفحات  -

تاریخ انتشار 2015